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1 Introduction

When transmitting analog source signals like images and sound over waveform channels, the
most common approach is to use separate source and channel coders. Separation of source and
channel was proven to be optimal by Shannon [1]. However, the price to pay to achieve near-
optimality involve very high encoding/decoding complexity, significant delays, specific design for
desired rate/distortion and threshold effect: lack of robustness to small changes in parameters.
So in practice, digital systems based on joint source-channel coding (general transformation) may
have performance advantages when complexity is constrained. Shannon-Kotel’nikov mapping is
a kind of non-linear transformation which can provide both bandwidth reduction and bandwidth
expansion.

Shannon-Kotel’nikov mappings are related to channeloptimized vector quantizers as devel-
oped by Vaishampayan [2]. As opposed to quantizing the source and thereby creating a discrete
set of representation points which are then mapped onto the channel, the Shannon-Kotel’nikov
mappings perform either a projection of the source onto a lower dimensional subset (lossy com-
pression), or map the source into a higher dimensional space (error control) [3].

2 Simulation

This report performed simulation of 2:1 Bandwidth Reduction with the Archimedes’ Spiral (as
shown in Figure 1) suing MATLAB with methods described in [3]. The simulation is performed
for a image signal source as shown in Figure 2(a) and an additive white Gaussian noise (AWGN)
channel. A factor-two bandwidth reduction, or compression, is achieved by combining two
consecutive samples using a non-linear mapping.

We perform the bandwidth reduction by transmitting a combination of two source samples
x1 and x2 as one channel sample y. This is achieved by first approximating a point in R2 to the
closest point on the double Archimedes’ spirals. The spirals can be described parametrically as,

x1 = 2∆
θ

2π
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As MATLAB code bellow described, the projection can be achieved by

θ̂ = argmin
θ
{(x1 ±

∆

π
θ sin θ)2 + (x2 −

∆

π
θ cos θ)2} (3)

The projected point is still 2-dimension, but can be compressed into 1-dimension y by

y = l±(r) = ±ζ(
π

∆
)2r2 (4)
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where + represents points residing on the blue line and the − represents points residing on the
the red lines in Figure 1. r = ∆

π θ and the parameter ζ = η∆ = 0.16∆ makes this operator
an approximation of the length along the spiral. This expression is found by using a nonlinear
curve fit on the expression of the true arc length

l(r)s =
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r)2 +
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sinh−1(
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r)) (5)
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Figure 1 Spiral mapping

%% spiral curve mapping and transform to 1 dimension
for i=1:test length

theta max = 255*pi/(2*∆ opt(i));
% max theta of spiral curve calculated from the max radius 255/2
spiral length = 0:2:yita*piˆ2/∆ opt(i)*(∆ opt(i)/pi*theta max)ˆ2;
% array of spiral curve length used to calculate points (x, y) on the curve
spiral theta = sqrt(spiral length./(yita*∆ opt(i)));
% array of theta calculated from spiral length
spiral x = ∆ opt(i)/pi*spiral theta.*cos(spiral theta);
% array of x component of points
spiral y = ∆ opt(i)/pi*spiral theta.*sin(spiral theta);
% array of y component of points
for j=1:signal length

distance = ...
(spiral x-source signal one(j)).ˆ2+(spiral y-source signal two(j)).ˆ2;

% distance from given point to spiral curve points
min pos = find(distance==min(distance));
% find the min distance, i.e., mapping given point onto curve
Y(j, i) = yita*piˆ2/∆ opt(i)*(∆ opt(i)/pi*spiral theta(min pos))ˆ2;
% calculate curve length of mapped point for signal transmission

end
end

As described in [3], when optimizing the spiral mapping, the goal is to find the ∆ that
minimizes the total distortion

∆opt = 2πσx
4

√
6 · η2

CSNR
(6)
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The decoded SNR is given by (as described in [3])

SNR =

√
6

2 · 0.16 · π2

√
CSNR (7)

and the Optimal Performance Theoretically Attainable (OPTA) for the 2 : 1 case is given by
SNR =

√
1 + CSNR.

White Gaussian noises were added to the signal as passing through the channel, as MATLAB
code described bellow.

%% signal pass though noisy channel
for i=1:test length

for j=1:signal length
Y(j, i) = Y(j, i) + variance std/CSNR(i)*randn;
% add white noise of channel

end
end

Using the inverse operation of l(r), the received signal can be decoded as described in MAT-
LAB code bellow:

%% decoding signal
for i=1:test length

for j=1:signal length
theta = sqrt(Y(j, i)/(yita*∆ opt(i)));
% decode theta from curve length
decode signal one(j, i) = ∆ opt(i)/pi*theta*cos(theta);
% 1D to 2D: x1 component
decode signal two(j, i) = ∆ opt(i)/pi*theta*sin(theta);
% 1D to 2D: x2 component

end
end

MATLAB code bellow calculated SNRs of simulated result.

%% SNR of simulation
SNR = ones(test length, 1);
for i=1:test length

sample image = decode signal one(:, i);
sample image = reshape(sample image, row, column)+(255/2.0);
error = sample image - double(image);
SNR(i) = 10*log10(signal power/mean(mean(abs(error.ˆ2))));

end

3 Results and Discussion

The results of 2:1 Bandwidth Reduction with the Archimedes’ Spiral simulation are shown in
Figure 2 and Figure 3. Figure 2 (a), (b), (c) and (d) are the original image, reconstructed image
with CSNR = 30db, 16dB and 4dB separately.

As calculated, the system has an SNR only
√

6/π = 1.1 dB away from OPTA, which is shown
clearly in the Figure 3. Limited by methods used in the MATLAB simulation, the performance
is different from the SNR calculated, better or worse. As we can see, as CSNR increase from 20
to 30, the simulation results were narrowly worse than the results of calculation, which may be
limited by some method used in the simulation. Further research should be focusing on this.
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(a) Original image (b) CSNR: 30dB

(c) CSNR: 16dB (d) CSNR: 4dB

Figure 2 (a) Original image (b) Reconstructed image with CSNR = 30dB (c) Reconstructed
image with CSNR = 16dB (d) Reconstructed image with CSNR = 4dB
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Figure 3 Optimal performance theoretically attainable (OPTA)
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